Applications of the Pythagorean Theorem - Magnetism. Unlike temperature, magnetism requires three numbers to define the strength of its field in space. Scientists call magnetism a **Vector** quantity because it is defined by both its magnitude at a point in space, and its direction at that point, given by the coordinate (X, Y, Z). The Pythagorean Theorem is used to calculate the magnitude (or total strength) of the magnetic field from the separate Bx, By and Bz quantities that make up its description as a field in 3-dimensional space. To find the Bx, By and Bz components of Earth's magnetic field (in units of nanoTeslas, nT) where you live, visit the International Geomagnetic Reference Field Model (Part 2 Form) http://nssdc.gsfc.nasa.gov/space/model/models/igrf.html Enter the year (2004) and the requested geographic latitude, longitude (in degrees, minutes and seconds – D M S entries in table) and elevation (Use 0.0 km for table). You can find the geographic coordinates for a specific location at http://geonames.usgs.gov Follow 'Query GNIS" to the input form. Select 'Civil' for a town name. The Pythagorean Theorem in 3-dimensions is → $$D = \sqrt{x^2 + y^2 + z^2}$$ ## Use the Pythagorean Theorem to fill-in the last column of the table | City | Longitude | Latitude | Bx | By | Bz | Total B | |-------------|-----------|----------|-------|-------|-------|---------| | | D M S | D M S | (nT) | (nT) | (nT) | (nT) | | Chicago | 87 54 55 | 41 50 05 | 26600 | 1234 | 48620 | 55434 | | Boston | 71 05 00 | 42 18 00 | 25251 | 2234 | 46676 | | | Miami | 80 32 00 | 25 37 00 | 36274 | 0.2 | 28396 | | | Hollywood | 118 20 00 | 34 01 00 | 32161 | -2684 | 39236 | | | Bangor | 68 47 15 | 44 49 56 | 23437 | 2600 | 48244 | | | Kansas City | 94 43 37 | 39 07 06 | 28846 | 365 | 46535 | | | Sioux Falls | 96 43 48 | 43 32 48 | 25602 | 283 | 50988 | | | Spokane | 117 22 00 | 47 37 00 | 22977 | -3263 | 53054 | | | Provo | 103 52 06 | 43 10 02 | 26045 | -875 | 50767 | | | Anchorage | 149 15 02 | 61 10 00 | 16377 | -3572 | 53739 | | | Honolulu | 154 53 24 | 19 33 15 | 32644 | 1402 | 14594 | | | Sedona | 111 47 35 | 34 50 38 | 31818 | -1978 | 41379 | | Question 1 - What cities have the highest and lowest magnetic field (B) strengths? Question 2 - What is the average B value of Earth's magnetic field for all locations? **Question 3** – Some adults think that Sedona Arizona has special 'powers'. How does the magnetism at this location compare to other locations in the table? **Question 4:** Plot the **By** values on a map. What pattern do you see? | City | Longitude
D M S | Latitude
D M S | Bx
(nT) | By
(nT) | Bz
(nT) | Total B
(nT) | |-------------|--------------------|-------------------|------------|------------|------------|-----------------| | Chicago | 87 54 55 | 41 50 05 | 26600 | 1234 | 48620 | 55434 | | Boston | 71 05 00 | 42 18 00 | 25251 | 2234 | 46676 | 75116 | | Miami | 80 32 00 | 25 37 00 | 36274 | 0.2 | 28396 | 65148 | | Hollywood | 118 20 00 | 34 01 00 | 32161 | -2684 | 39236 | 71847 | | Bangor | 68 47 15 | 44 49 56 | 23437 | 2600 | 48244 | 75941 | | Kansas City | 94 43 37 | 39 07 06 | 28846 | 365 | 46535 | 77430 | | Sioux Falls | 96 43 48 | 43 32 48 | 25602 | 283 | 50988 | 80688 | | Spokane | 117 22 00 | 47 37 00 | 22977 | -3263 | 53054 | 81894 | | Provo | 103 52 06 | 43 10 02 | 26045 | -875 | 50767 | 80701 | | Anchorage | 149 15 02 | 61 10 00 | 16377 | -3572 | 53739 | 79609 | | Honolulu | 154 53 24 | 19 33 15 | 32644 | 1402 | 14594 | 50607 | | Sedona | 111 47 35 | 34 50 38 | 31818 | -1978 | 41379 | 73871 | **Question 1** - What cities have the highest and lowest magnetic field (**B**) strengths? **Answer:** The city with the highest total magnetic field strength is Spokane, Washington (81894 nT). The city with the smallest total magnetic field strength is Honolulu, Hawaii (50607 nT) **Question 2** - What is the average **B** value of Earth's magnetic field for all locations? **Answer**: (55434 + 75116 + 65148 + 71847 + 75941 + 77430 + 80688 + 81894 + 80701 + 79609 + 50607 + 73871) / 12 = 868286/12 =**72357 nT**Remember to have the students give the answer in the correct physical units. **Question 3** – Some adults think that Sedona Arizona has special 'powers'. How does the magnetism at this location compare to other locations in the table? **Answer:** There are several things the student can note. 1) It has only the 8th strongest magnetic field out of 12 cities; 2) It has the third lowest Bz value (41379 nT); and 3) It has the fourth-lowest By value (-1978). None of these are as remarkable as what we find among the other large cities in this random sample. **Question 4:** Plot the **By** values on a map. What pattern do you see? **Answer:** The most obvious thing the students should notice is that: - 1) The By magnetic values are always much smaller than for the Bx and Bz magnetic components. In fact they are typically only about 10% of the other two components; - 2) The values to the east of latitude 100 to 105 degrees are positive. The values to the west are negative. Note, the reason for this is that the longitude of the magnetic pole is 105 degrees, so this is the 'axis of symmetry' for these values.